The acute effect of milk supplementation with and without creatine on post-exercise bone metabolism in young healthy females – a crossover study.

H. Snider1, J. Brown1, E.C. Fraschetti1, L.E. Skelly1, P. Klentrou1,2, A.R. Josse1,2

1School of Kinesiology and Health Science, Faculty of Health, York University, 2Department of Kinesiology, Faculty of Applied Health Sciences, Brock University.

\textbf{Introduction}
Nutrition and exercise positively affect bone health. Specifically, high impact plyometric and resistance exercise provide a sufficient mechanical loading stimulus to support bone development and remodeling, while dairy foods, with their bone-supporting nutrient profile, contribute to the mass, structural integrity and strength of bone. In addition, creatine, a non-nutritive ergogenic aid, has demonstrated a potential positive effect on mitigating bone loss in older adults and a promising mechanistic benefit to bone in cell culture and animal models. However, no study has assessed these factors together following a single high-impact exercise bout. Therefore, the objective of this study is to determine whether milk in combination with creatine will positively impact loading exercise-induced bone cell activity in healthy young females more than milk alone.

\textbf{Methods}
15 healthy young females will be asked to complete 3 acute trials in a randomized, crossover design: 1) exercise+carbohydrate (CHO), 2) exercise+milk (MILK), and 3) exercise+milk+creatine (CRE). Each trial will be separated by a 4-wk wash-out to control for the menstrual cycle and to remove any residual effects from creatine supplementation. Blood samples will be taken at baseline (rested/fasted), 5min, 1h, 24h and 48h post-exercise. Serum bone formation (BSAP) and resorption (CTX and Sclerostin) markers will be measured. Participants will consume their respective supplements (555 ml milk +/- creatine or energy-matched carbohydrate) immediately and 1 hour post-exercise. Participants on the creatine trial will also undergo a creatine-loading phase (5g x 4x/d for 6d) prior to the trial and will consume a 5g/d maintenance dose in the evenings before the 24h and 48h blood samples.

\textbf{Anticipated Results}
Due to the benefits of milk, creatine and loading exercise on bone health, we expect that CRE will have the greatest positive effect on acute bone cell activity after a single high-impact exercise bout, followed by MILK and then CHO.